Snowmass Computational Frontier Workshop

10-11 August 2020

Andreas Albrecht (QMAP/UC Davis)
with

Andrew Sornborger and Patrick Coles
(LANL)

LA-UR-20-26176

Snowmass Computational Frontier Workshop

10-11 August 2020

Part 1: Big picture

Part 2: Examples

Snowmass Computational Frontier Workshop

10-11 August 2020

Part 1: Big picture

Part 2: Examples

Snowmass Computational Frontier Workshop

10-11 August 2020

QML: Machine learning with quantum computers

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations:

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations: ?

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations: ?

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations:

QM is puzzling to our classical intuitions

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations:

QM is puzzling to our classical intuitions

Philosophical ramblings

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations:

QM is puzzling to our classical intuitions

Philes phical randings

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations:

QM is puzzling to our classical intuitions

Philes phical randings

Systematic study of the emergence of classical from quantum in physical systems

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

The QIS boom is providing an expanding array of systems where these phenomena can (and must be) studied

Philes phical randings

emergence of classical from quantum in physical systems

Systematic study of \

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

The QIS boom is generating increasing practical interest in all these topics

Systematic study of the emergence of classical from quantum in physical systems

Philes phical randings

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

QML: Machine learning with quantum computers

Quantum Foundations:

Systematic study of the emergence of classical from quantum in physical systems

r Workshop

Snowmass Computational Frontier Workshop

10-11 August 2020

of entanglement in quantum systems.

Einselection:
The section of preferred (e.g. wave packet)
states by decoherence

Systematic study of the emergence of classical from quantum in physical systems

QML: Machine learning with quantum computers

Quantum Foundations:

r Workshop

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

Einselection:
The section of preferred (e.g. wave packet) states by decoherence

Systematic study of the emergence of classical from quantum in physical systems

QML: Machine learning with quantum computers

Exploration of quantum computing algorithms

Quantum Foundations:

Workshop

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

Which subsystems look classical?

Einselection:
The section of preferred (e.g. wave packet)
states by decoherence

Systematic study of the emergence of classical from quantum in physical systems

QML: Machine learning with quantum computers

Exploration of quantum computing algorithms

Quantum Foundations:

Workshop

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

Which subsystems look classical?

Einselection:
The section of preferred (e.g. wave packet) states by decoherence

quantum in physical systems

Systematic study of the emergence of classical from

QML: Machine learning with quantum computers

Exploration of quantum computing algorithms

Quantum Foundations:

Workshop

Snowmass Computational Frontier Workshop

10-11 August 2020

100.00

Decoherence: The onset of entanglement in quantum systems.

Which subsystems look classical?

Einselection:
The section of preferred (e.g. wave packet) states by decoherence

Exploration of quantum computing algorithms

Locality (QFT)

Systematic study of the emergence of classical from quantum in physical systems

Quantum Foundations:

Workshop

QML: Machine learning with

quantum computers

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

Arrow of time (initial state/cosmology)

Which subsystems look classical?

Einselection:
The section of referred (e.g. wave packet) states by decoherence

QML: Machine learning with quantum computers

Exploration of quantum computing algorithms

Locality (QFT)

Quantum Foundations:

Workshop

Systematic study of the emergence of classical from quantum in physical systems

Snowmass Computational Frontier Workshop

10-11 August 2020

Decoherence: The onset of entanglement in quantum systems.

Arrow of time (initial state/cosmology)

Which subsystems look classical?

Einselection:
The section of referred (e.g. wave packet) states by decoherence

5

Locality (QFT)

QML: Machine learning with quantum computers

exploration of quantum computing algorithms

System learning (Holography/quantum gravity)

Quantum Foundations:

Workshop

Systematic study of the emergence of classical from quantum in physical systems

Snowmass Computational Frontier Workshop

10-11 August 2020

Part 1: Big picture

Part 2: Examples

Snowmass Computational Frontier Workshop

10-11 August 2020

Part 1: Big picture

Part 2: Examples

Snowmass Computational Frontier Workshop

10-11 August 2020

Part 2: Examples

- Decoherence and einselection away from the Markovian limit (Adapted Caldeira Leggett Model, ACL)
 The "copycat process", arrow of time
- 2) Einselection, subsystems and locality on a quantum computer Emergence of locality
- 3) Using quantum assisted machine learning for system discovery

Our collaboration:

Arsalan Adil (QMAP/UCD)
AA (QMAP/UCD)
Andrew Arrasmith (LANL)
Rose Baunach (QMAP/UCD)
Patrick Coles (LANL)
Zoe Holmes (LANL)
Andrew Sornborger (LANL)
Bin Yan (LANL)
Wojciech Zurek (LANL)

Sponsored in part by a
DOE Quantum Information
Science Enabled Discovery
(QuantISED) grant at
LANL/QMAP
AA & Sornborger as Leads

1) Decoherence and einselection away from the Markovian limit (Adapted Caldeira Leggett Model, ACL)

We've adapted the Caldeira-Leggett model (std toy model for exploring decoherence) to numerical applications

i) Numerical studies in all regimes (not just the non-unitary Markovian limit where it is usually treated)

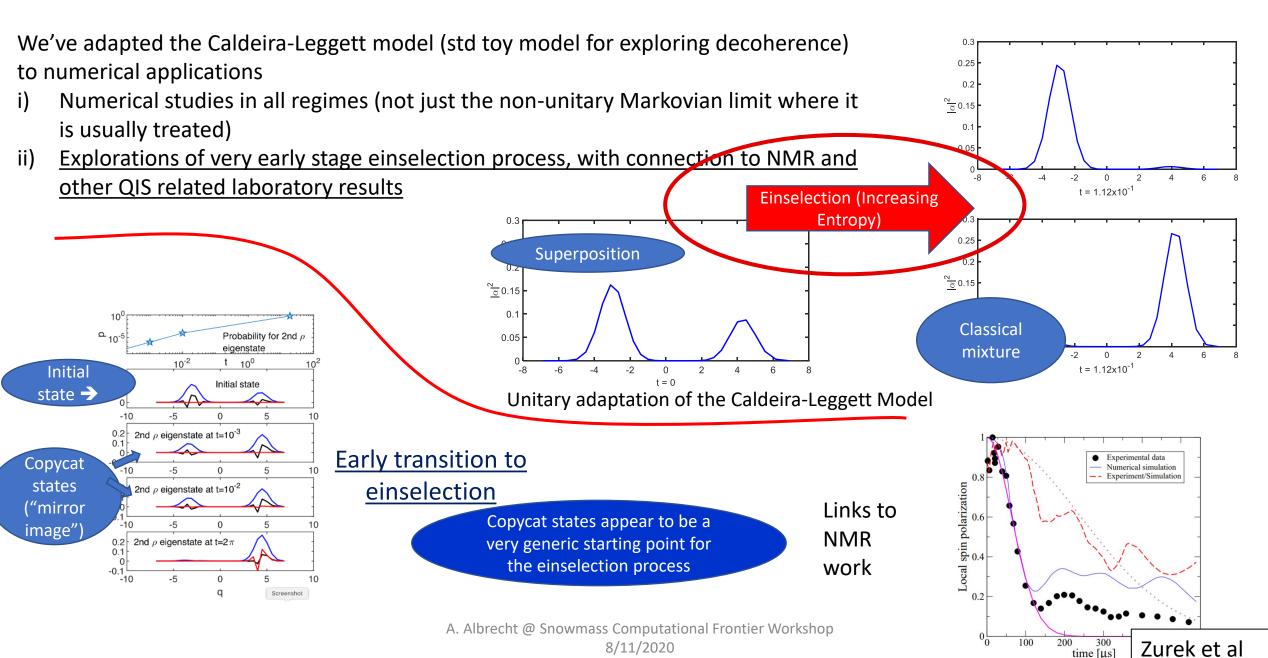
Decoherence and einselection away from the Markovian limit (Adapted Caldeira Leggett Model, ACL)

of ρ

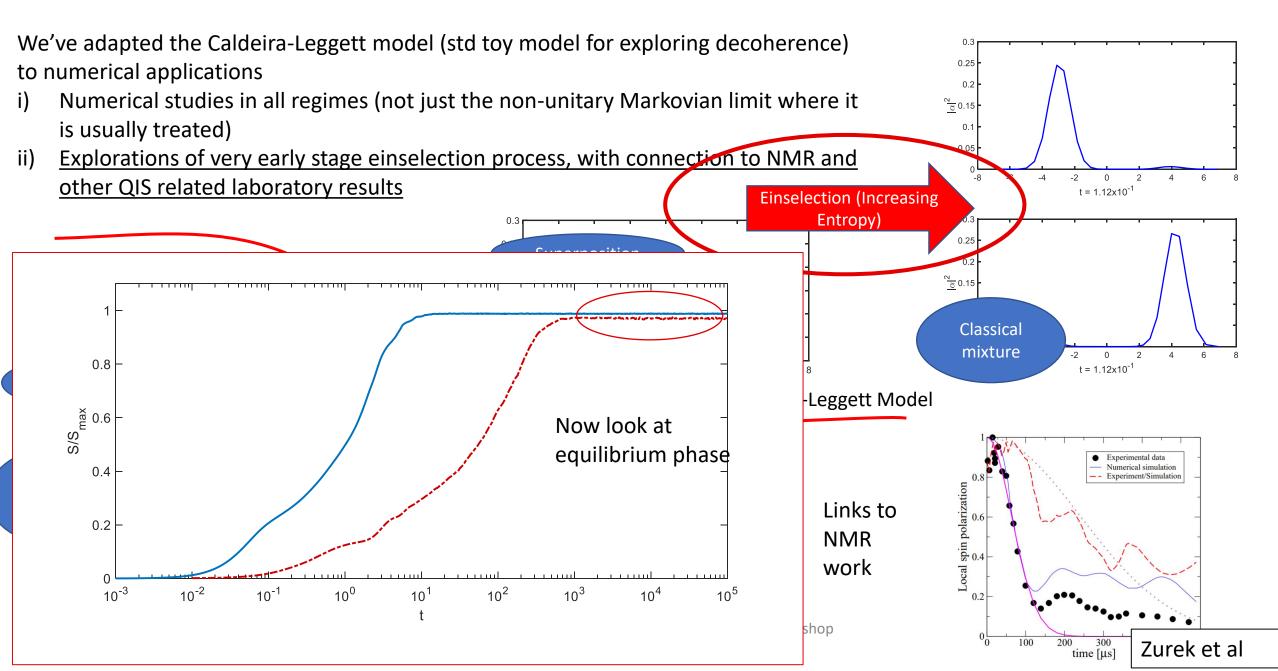
Zurek et al

time [µs]

We've adapted the Caldeira-Leggett model (std toy model for exploring decoherence) 0.25 Eigenstates to numerical applications Numerical studies in all regimes (not just the non-unitary Markovian limit where it ਨ<u>ੂੰ</u> 0.15 is usually treated) 0.1 0.05 Explorations of very early stage einselection process, with connection to NMR and other QIS related laboratory results $t = 1.12 \times 10^{-2}$ **Einselection (Increasing** Entropy) 0.25 Superposition ₹ 0.15 <u>₹</u> 0.15 Classical Probability for 2nd ρ 0.05 eigenstate mixture $t = 1.12 \times 10^{-1}$ Initial state -Unitary adaptation of the Caldeira-Leggett Model 0.2 2nd ρ eigenstate at t=10⁻³ Early transition to Copycat Numerical simulation Experiment/Simulation states 2nd ρ eigenstate at t=10⁻² einselection Local spin polarization


9

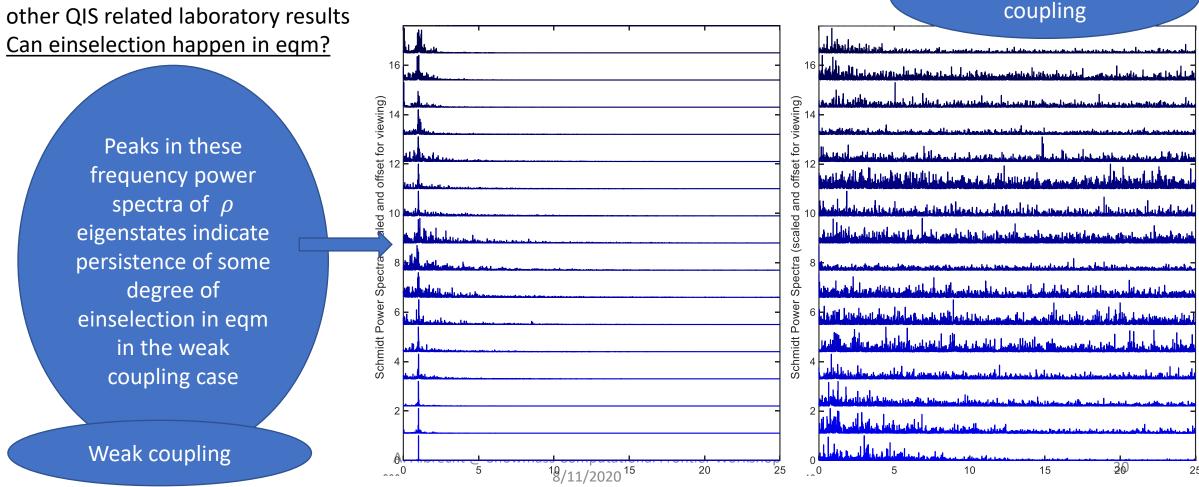
9 ("mirror Links to Copycat states appear to be a image") **NMR** 0.2 2nd ρ eigenstate at t=2 π very generic starting point for the einselection process work 0.2


A. Albrecht @ Snowmass Computational Frontier Workshop

8/11/2020

1) Decoherence and einselection away from the Markovian limit (Adapted Caldeira Leggett Model, ACL)

1) Decoherence and einselection away from the Markovian limit (Adapted Caldeira Leggett Model, ACL)


Decoherence and einselection away from the Markovian limit (Adapted Caldeira Leggett Model, ACL)

We've adapted the Caldeira-Leggett model (std toy model for exploring decoherence) to numerical applications

Numerical studies in all regimes (not just the non-unitary Markovian limit where it is usually treated)

Explorations of very early stage einselection process, with connection to NMR and

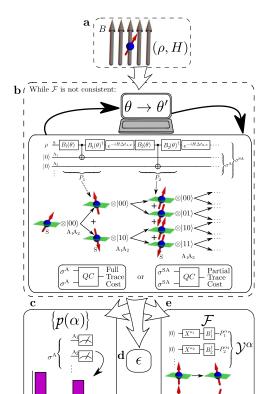
other QIS related laboratory results

But not for strong

2) Einselection, subsystems and locality on a quantum computer

Consistent Histories:

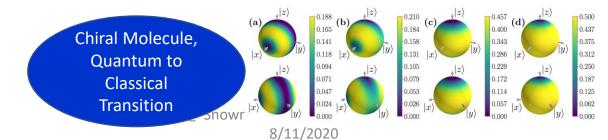
Quantum History


Consistent

Classical Probabilities

Make Sense

Consistent Histories:


- Crucial to understanding probability in HEP and cosmology
- Removes conceptual problem of identifying probabilities in quantum systems
- Relates to subsystems, separability and locality of fundamental physics

Studying consistent histories on QCs

Arrasmith, Cincio, Sornborger, Zurek, Coles, *Nat. Commun.*

- Implemented quantum algorithm for determining consistency
- Used machine learning to find consistent event descriptions
 - → find the "true subsystems" of the QC

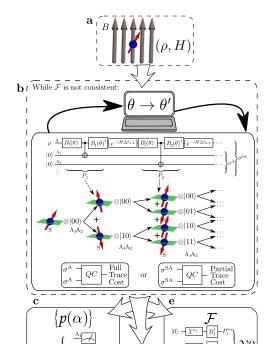
31

2) Einselection, subsystems and locality on a quantum computer

Consistent Histories:

Quantum History

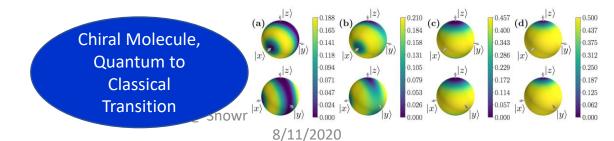
Consistent


Classical Probabilities

Make Sense

Consistent Histories:

- Crucial to understanding probability in HEP and cosmology
- Removes conceptual problem of identifying probabilities in quantum systems
- Relates to subsystems, separability and locality of fundamental physics


"quantum foundations"

Studying consistent histories on QCs

Arrasmith, Cincio, Sornborger, Zurek, Coles, *Nat. Commun.*

- Implemented quantum algorithm for determining consistency
- Used machine learning to find consistent event descriptions
 - → find the "true subsystems" of the QC

32

2) Einselection, subsystems and locality on a quantum computer

Consistent Histories:

Quantum History

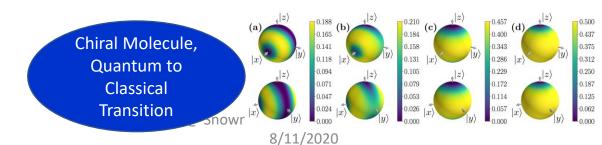
Consistent

Classical Probabilities

Make Sense

Consistent Histories:

- Crucial to understanding probability in HEP and cosmology
- Removes conceptual problem of identifying probabilities in quantum systems
- Relates to subsystems, separability and locality of fundamental physics

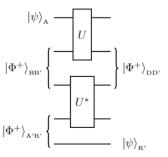


Studying consistent histories on QCs

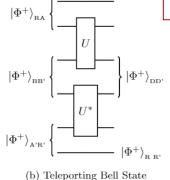
Arrasmith, Cincio, Sornborger, Zurek, Coles, *Nat. Commun.*

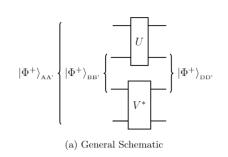
- Implemented quantum algorithm for determining consistency
- Used machine learning to find consistent event descriptions
 find the true subsystems of the QC

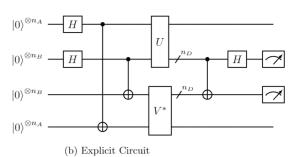
Locality



33


New project in progress


- i) If only certain information is available from a unitary system, what tools can we use to try to infer the full unitary?
- ii) Are there bounds on what we can learn about the unitary?


We are working to develop decoding protocols and cost functions to develop operational tools to address these questions, and to connect with existing literature on QML

Snowmass Computational Frontier Workshop

10-11 August 2020

Part 1: Big picture

Part 2: Examples

Arrow of time (initial state/cosmology)

HEP related

Locality (QFT)

System learning (Holography/quantum gravity)

- → The current "QIS era" provides numerous opportunities for explorations of fundamental importance to HEP
- → We are only beginning to scratch the surface